skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yoon, Yong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In one aspect, the disclosure relates to a smart pseudo-palate for use in a Smart Electropalatograph (EPG) for Linguistic and Medical Applications (SELMA) system. In one aspect, the pseudo-palate is constructed from a thin, flexible polymer membrane and having an embedded electrode array. The pseudo-palate is configured to detect tongue contacts during speech while causing minimal disturbance or interference with speech motion. The disclosed pseudo-palate in the SELMA system is integrated with a microcontroller, wireless electronic module, and external readout app. The disclosure, in another aspect, relates to integration of the pseudo-palate with a smart sports/health mouth guard containing a series of sensors for monitoring head impacts, body temperature, and heart rate. The SELMA system is capable of automated detection of neurological conditions and brain injury including, but not limited to, concussion, and neurological movement disorders, using acoustic, articulatory, and other biosignals from the device using deep data analysis. 
    more » « less
    Free, publicly-accessible full text available May 6, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. In this work, a composite of barium ferrite (BaM) and multiwalled carbon nanotubes (CNTs) in a polymer matrix of polydimethylsiloxane (PDMS) are reported for the purpose of suppressing electromagnetic interference (EMI). Shielding is accomplished primarily through absorption, which arises from a combination of the ferromagnetic resonance (FMR) from the BaM and conductive losses from the CNTs. The composite is fabricated by mixing commercially available BaM nanoparticles and CNTs into PDMS, screen printing the mixture into molds, then curing at 80 °C in a DC magnetic field. Characterization involves placing the composite in the cross‐section of a rectangular waveguide, then using a vector network analyzer (VNA) to measure scattering (S) parameters from 33–50 GHz. Using the measured S parameters, power reflected and absorbed can be calculated and used to characterize the composite's shielding effectiveness (SE), and the complex permittivity and permeability can be determined. The resulting 2.4 mm thick composite shows a peak absorption of 26.9 dB at the FMR frequency of 47.4 GHz. When normalized for thickness, the composite, on average, absorbs 11.3 dB mm−1and operates at a higher frequency than other shielding composites found in the literature. 
    more » « less
  4. The goal of the National Science Foundation’s International Research Experiences for Students (IRES) program is to provide high quality educational experiences for small groups of U.S. students through active research participation in collaboration with foreign researchers at an international site and provide students with international collaborative research training and a personal network on which to build future collaborations. Interdisciplinary Research in Korea on Applied smart systems (IRiKA) is an NSF IRES Track I program that commenced in 2019. Over the lifetime of this 3-year project (2019 - 2021), a cohort of 5 students selected from three participating U.S. institutions are to be supported each year, making the total number of participants 15. In Summer 2019, the first cohort of five students completed their 8-week immersive research internship at Korea’s top-ranked university. COVID-19 affected most, if not all, in-bound and out-bound international programs. IRiKA was no exception. In late February 2020, the program was canceled altogether because no viable alternative could be offered for Summer 2020, as institutions world-wide were grappling with disruptive challenges the pandemic brought on. In Fall 2020, with contingency plans in place and an additional Korean host site aboard, the project team solicited applications. However, in early 2021, before the final selection of the 2021 cohort was complete, two of the U.S. participating institutions announced that international travel would not be permitted for their faculty and students. The project team went on to select a cohort from one U.S. institution only and continued to monitor the travel health notice level for Korea. While some modifications were made to the in-country program to comply with the COVID-19 regulations in Korea, the 8-week research experience was in-person and remained largely uncompromised for the 2021 cohort. In this Work-in-Progress paper, the three US-based lead investigators compare the two versions of the IRiKA program – before and during the pandemic – and share the lessons learned. The no-cost-extension will allow IRiKA to continue until Summer 2022. Selection of the Summer 2022 cohort will be complete by early March of 2022. 
    more » « less
  5. The goal of the National Science Foundation’s International Research Experiences for Students (IRES) program is to provide high quality educational experiences for small groups of U.S. students through active research participation in collaboration with foreign researchers at an international site and provide students with international collaborative research training and a personal network on which to build future collaborations. Interdisciplinary Research in Korea on Applied smart systems (IRiKA) is an NSF IRES Track I program that commenced in 2019. Over the lifetime of this 3-year project (2019 - 2021), a cohort of 5 students selected from three participating U.S. institutions are to be supported each year, making the total number of participants 15. In Summer 2019, the first cohort of five students completed their 8-week immersive research internship at Korea’s top-ranked university. COVID-19 affected most, if not all, in-bound and out-bound international programs. IRiKA was no exception. In late February 2020, the program was canceled altogether because no viable alternative could be offered for Summer 2020, as institutions world-wide were grappling with disruptive challenges the pandemic brought on. In Fall 2020, with contingency plans in place and an additional Korean host site aboard, the project team solicited applications. However, in early 2021, before the final selection of the 2021 cohort was complete, two of the U.S. participating institutions announced that international travel would not be permitted for their faculty and students. The project team went on to select a cohort from one U.S. institution only and continued to monitor the travel health notice level for Korea. While some modifications were made to the in-country program to comply with the COVID-19 regulations in Korea, the 8-week research experience was in-person and remained largely uncompromised for the 2021 cohort. In this Work-in-Progress paper, the three US-based lead investigators compare the two versions of the IRiKA program – before and during the pandemic – and share the lessons learned. The no-cost-extension will allow IRiKA to continue until Summer 2022. Selection of the Summer 2022 cohort will be complete by early March of 2022. 
    more » « less
  6. null (Ed.)
    In this Work-in-Progress paper, we report the results and reflect on the first year of the IRiKA program, which ran from June 2019 to August 2019. The first co-hort of five students were selected in January 2019. Three among the five participants were underrepresented minority students. To evaluate the program, we used formative and summative assessments. Entrance surveys, exit surveys, and program evaluations were used to collect qualitative data. The qualitative method involved interviews with students, analysis of students’ weekly blog posts, and conversations with the Korean mentors. The results of the analysis were and will be used to reflect on the curriculum and form a basis for possible future revisions. 
    more » « less